Introduction: Examples
 
 

 
Introduction to Transformation
Given: f(x)
g(x) = A f(B(x)-h) + D
g(x) = +/-A f(+/-B(x)-h)+D

h = horizontal shift: +h is shift to right; -h (x+h) is shift to left

B = horizontal stretch: 0<B<1 is stretch; B>1 is compression

-B = reflection about the y-axis

A = vertical stretch: A>1 is stretch; A < 1 is compression

-A = refection about x-axis

D = vertical shift: +D is shift up ; -D is shift down
 


 
Order of Transformation
Given: f(x)
g(x) = +/-A f(+/-B(x)-h)+D

1. h = horizontal shift

2. B = horizontal stretch / compression

3. -B = reflection about the y-axis

4. A = vertical stretch / compression

5. -A = refection about x-axis

6. D = vertical shift 
 

1. Horizontal shift y = f(x-h)

2. Horizontal stretch / compression y = fB(x)

3. Horizontal reflection about y-axis: y=f(-x)

4. Vertical Stretch / Compression: y = A f(x)

 

5 Vertical Reflection about x-axis (-A): y = - A f(x)

5. Vertical reflection example 2

6.vertical shift: y = f(x) + D
Example 1
 

Example 2
 
 

Example 3