2.3 Whole Numbers (Base ten)

Example 6. Write 31,407 in expanded form.

        Answers: 31407 = 31(1000) + 4(100) + 0(10) + 7(1)

Example 7. Write the numeral 43,762,123,504,931 as words.

        Answers: forty-three trillion, seven hundred and sixty-two billion, one hundred and twenty-three million,
                        five hundred and four thousand, nine hundred and thirty-one

Example 8. Express each numeral as an expansion of its base or with multibase pieces.
    (a) 1345 (b) 32110 (c) 11012 (d) 6138

        Answers: (a) 1345 = 1(52) + 3(51) + 4(50) = 1(25) + 3(5) + 4(1)

            (b) 32110 = 3(102) +2(101) + 1(100) = 3(100) + 2(10) + 1 (1)

            (c) 11012 = 1(23) +1(22) + 0(21) + 1(20) = 1(8) + 1(4) +0(2) +1

                (d) 6138 = 6(82) +1(81) + 3(80)

Example 9. Write the first 20 base 3 terms

        Answers: 1, 2, 10, 11, 12, 20, 21, 22, 100, 101, 102, 110, 111, 112, 120, 121, 122, 200, 201, 202, 210

Example 10. Convert the following to base ten:

        (a) 1348 (b) 230324 (c) 1101102

        Answers: (a) 1348 = 1(82) + 3(81) + 4(80) = 1(64) + 3(8) + 4(1) = 68

            (b) 230324 = 2(44) + 3(43) + 0(42) + 3(4) + 2 = 512+192+12+2 = 718

            (c) 1101102 =1(25) + 1(24) + 0 + 1(22) + 1(2) + 0 = 32+16+4+ 2 = 54

Example 11. Convert the following base ten to requested bases:

        (a) 613 = base 8 (b) 23250 to base 20

        Answers: (a) 61310 = 11458
 
Bases 84 = 4096 83 = 512 82 = 64 81 = 8 80 = 1 Answer/Sum
8 0 1R101 1R37 4R5 5 11458
10 0 1x512

=512

1x64

=64

4x8

=32

5x1

=5

613

Answers: (a) 2325010 = 2 18 2 1020
Bases 204 = 160,000 203 = 8,000 202 = 400 201 = 20 200 = 1 Answer/Sum
20 0 2R7250 18R50 2R10 10 2 18 2 108
10 0 2x8000

=16000

18x400

=7200

2x20

=40

10x1

=10

23250