Note: a, b, and c are constants; x, r, s and y are variables (i is the complex number where )
Properties of Absolute Value, |x|
(1)
(2) |a| = |-a|
(3) |a-b|=|b-a|
(4)
(5) If then
Interval and Set Notations
( ) denotes open interval
and [ ] denotes closed interval
Interval Notation = | Set Notation |
Set of all real numbers |
Set Symbols | Meanings |
N | The set of natural numbers, e.g. 1, 2, 3, 4, .... |
Z | The set of all integers, e.g. -2, -1, 0, 1, 2, ... |
Q | The set of all rational number, e.g. |
R | The set of all real numbers, e.g. |
C | The set of all complex number: a + bi |
The empty set, contains no element |
Factorization / Expansion Summary
(1) (a + b)2 = a2 + 2ab + b2
(2) (a - b)2 = a2 - 2ab + b2
(3) a2 - b2 = (a + b)(a - b)
(4) (a + b)3 = a3 + 3a2 b + 3ab2 + b3
(5) (a - b)3 = a3 - 3a2 b + 3ab2 - b3
(6) a3 + b3 = (a + b)(a2 - ab + b2)
(7) a3 - b3 = (a - b)(a2 + ab + b2)
Properties of Exponential (Examples)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
Properties of Radicals
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
Properties of Logarithms (Exponential)
Logarithms | Exponential Equivalents |
Formulas for Common Functions
Function | Formula |
Linear | |
Quadratic | |
Exponential | |
Logarithmic | |
Polynomial | |
Rational |